363. Molecular Polarisability. The Molar Kerr Constants of

 Phenol and its p-Methyl, Chloro-, Bromo-, and Nitro-derivatives.By R. J. W. Le Fèvre and A. J. Williams.

The apparent dipole moments, molar Kerr constants, and certain other properties of the compounds mentioned in the title have been measured at 25° in carbon tetrachloride or benzene. Semi-axes of the corresponding polarisability ellipsoids are calculated, various bond data being used from previous work, and compared with results from experiment. Measurement and prediction are reconcilable if (a) in phenol and p-cresol the $\mathrm{O}-\mathrm{H}$ link lies effectively slightly out of the plane of the Ar ring (either vibrating above or below this plane, or adopting fixed conformations, thus making the solutes mixtures of conformational isomers), and the resultant moments act at 60° or more to the $\mathrm{C}-\mathrm{O}$ directions; and (b) in the other three compounds the molecules are effectively flat, and the resultant moments act at angles of $c a$. $45^{\circ}, 37^{\circ}$, and 5° to the $\mathrm{C}-\mathrm{O}$ direction.

As a result of recent work ${ }^{1}$ on the n-alcohols it became of interest to enquire whether conclusions drawn therefrom regarding the polarisation and polarisability of the $\mathrm{C}-\mathrm{O}-\mathrm{H}$ unit could be applied satisfactorily to phenols. Accordingly, appropriate measurements were instituted on the five solutes named in Tables $\mathbf{1 - 3}$, and are here reported and discussed.

Experimental.-Materials and procedures. The solutes were redistilled or recrystallised immediately before use, steps being taken to keep them anhydrous. Benzene and carbon tetrachloride, as solvents, were also dry, being stored over sodium wire or calcium chloride respectively. Apparatus, procedures, methods of calculation, etc., were those standard among the Sydney group. ${ }^{2,3}$

Results.-These are recorded under usual headings (see refs. 2-4 for definitions, explanations, etc.) in Tables 1-3.

Table 1. Kerr constants, refractivities, dielectric constants, and densities of mixtures containing weight fractions w_{2} of solute at 25°.*

Phenol in carbon tetrachloride							
$10^{5} w_{2} \ldots \ldots$.	253	448	507	644	802	887	1118
$\varepsilon^{25} \ldots \ldots \ldots$.	$2 \cdot 2398$	$2 \cdot 2496$	$2 \cdot 2524$	$2 \cdot 2591$	$2 \cdot 2665$	$2 \cdot 2710$	$2 \cdot 2814$
$d_{4}{ }^{25} \ldots \ldots$.	1.58228	1.58107	1.58045	1.57952	1.57833	$1 \cdot 57780$	1.57594
$10^{4} \Delta n_{\text {D }} \ldots$	4	6	6	7	10	13	-
$10^{5} w_{2} \ldots \ldots$.	1556	2470	2863	2879	3715	5541	
$\varepsilon^{25} \ldots \ldots \ldots$.	$2 \cdot 3021$	$2 \cdot 3469$	$2 \cdot 3678$	$2 \cdot 3682$	$2 \cdot 4124$	$2 \cdot 5164$	
$d_{4}{ }^{25} \ldots \ldots$.	1.57289	1.56632	1-56340	1.56222	1.55718	1.54442	
$10^{4} \Delta n_{\text {D }} \ldots$	22		41	42	53	76	
whence $\Delta \varepsilon=(5.15 \pm 0.02) w_{2}+24.3 w_{2}{ }^{2} ; \Delta d=(-0.82 \pm 0.02) w_{2}+5.23 w_{2}{ }^{2} ; ~ \Sigma \Delta n / \Sigma w_{2}=0.1394$							
$10^{5} w_{2}$	474	492		1076	1228	1525	1789
$10^{7} \Delta B$	0.018	0.015	7	$0 \cdot 040$	$0 \cdot 051$	$0 \cdot 062$	0.068
whence $\Sigma\left(\Delta B . w_{2}\right) / \sum w_{2}{ }^{2}=3.86_{0} ; ~ \Sigma \Delta B / \Sigma w_{2}=3.80_{8}$							
p-Cresol in carbon tetrachloride							
$10^{5} w_{2} \ldots \ldots$.	549	709	786	1075	1277	1286	1567
$\varepsilon^{25} \ldots \ldots . .$.	2.2508	$2 \cdot 2577$	2.2624	$2 \cdot 2745$	$2 \cdot 2829$	$2 \cdot 2830$	$2 \cdot 2964$
$d_{4}{ }^{25} \ldots \ldots$.	1.57981	1.57848	1.57767	1.57523	1.57364	1.57364	1.57107
$10^{4} \Delta n_{\text {D }} \ldots$	7	8	-	-	18	18	-
$10^{5} w_{2} \ldots \ldots$.	1734	2133	2210	2391	3022	3112	4041
$\varepsilon^{25} \ldots \ldots \ldots$.	$2 \cdot 3040$	$2 \cdot 3209$	$2 \cdot 3259$	$2 \cdot 3323$	$2 \cdot 3619$	$2 \cdot 3662$	2.4118
$d_{4}{ }^{25} \ldots \ldots$.	1.56992	1.56648	1-56574	1-56446	1.55927	1.55865	1.55109
$10^{4} \Delta n_{\text {D }} \ldots$	23	28	-	29	39	40	52

whence $\Delta \varepsilon=(4.36 \pm 0.02) w_{2}+3.38 w_{2}^{2} ; \Delta d=(-0.872 \pm 0.003) w_{2}+1.24 w_{2}^{2} ; ~ \Sigma \Delta n / \Sigma w_{2}=0.1294$

[^0]Table 1. (Continued.)

$10^{5} w_{2} \ldots \ldots$	923	963	1099	1514	1551	1973	2153	3086	3129	3937	3939
$10^{7} \Delta B$	\ldots	0.021	0.025	0.028	0.041	0.038	0.047	0.054	0.075	0.076	0.093

p-Chlorophenol in carbon tetrachloride

$10^{5} w_{2} \ldots \ldots$.	522	728	1128	1142	1153	1378	1427
$\varepsilon^{25} \ldots \ldots .$.	$2 \cdot 2647$	$2 \cdot 2788$	$2 \cdot 3079$	$2 \cdot 3075$	$2 \cdot 3086$	$2 \cdot 3257$	$2 \cdot 3286$
$d_{4}{ }^{25} \ldots \ldots$.	1.58253	1.58167	1.58039	1-58020	1.58025	1-57930	1-57938
$10^{4} \Delta n_{\text {D }}$	-	-	15	-	15	-	21
$10^{5} w_{2} \ldots \ldots$.	1629	1704	2440	2727	2754	3484	4333
$\varepsilon^{25} \ldots \ldots .$.	$2 \cdot 3414$	$2 \cdot 3472$	$2 \cdot 3888$	$2 \cdot 4078$	$2 \cdot 4089$	$2 \cdot 4508$	$2 \cdot 4958$
$d_{4}{ }^{25} \ldots \ldots$.	1.57851	1.57820	1.57535	1.57456	1.57431	1.57188	1.56864
$10^{4} \Delta n_{\text {D }} \ldots$	22	23	-	39	-	50	-

whence $\Delta \varepsilon=(7.41 \pm 0.03) w_{2}-28.2 w_{2}{ }^{2} ; \Delta d=(-0.376 \pm 0.003) w_{2}+0.23 w_{2}{ }^{2} ; \Sigma \Delta n / \sum w_{2}=0.1408$

$10^{5} w_{2}$	346	516	780	937	1008	1180	1374	1483	2272	2594
$10^{7} \Delta B$	0.057	0.071	0.094	$0 \cdot 120$	$0 \cdot 132$	$0 \cdot 153$	$0 \cdot 173$	$0 \cdot 181$	$0 \cdot 278$	$0 \cdot 305$
ce $\Sigma\left(\Delta B . w_{2}\right) / \Sigma w_{2}^{2}=12 \cdot 2_{6} ; \quad \Sigma \Delta B / \Sigma w_{2}=12 \cdot 5_{2}$										

p-Bromophenol in carbon tetrachloride							
$10^{5} w_{2} \ldots \ldots$.	468	960	1064	1216	1316	1573	1972
$\varepsilon^{25} \ldots \ldots \ldots$.	2.2516	$2 \cdot 2764$	2.2822	$2 \cdot 2906$	2.2940	2.3081	2.3289
$d_{4}{ }^{25} \ldots \ldots$.	1-58485	1.58527	1.58530	1.58541	1.58552	1-58574	1.58600
$10^{4} \Delta n_{\text {D }} \ldots$	3	-	13	15	-	-	29
$10^{5} w_{2} \ldots \ldots$.	2278	2311	2635	3026	4030	5504	
$\varepsilon^{25} \ldots \ldots \ldots$.	2.3438	$2 \cdot 3442$	$2 \cdot 3580$	$2 \cdot 3768$	$2 \cdot 4222$	$2 \cdot 4869$	
$d_{4}{ }^{25} \ldots \ldots$.	1.58638	1.58616	1.58652	$1 \cdot 58683$	$1 \cdot 58757$	$1 \cdot 58887$	
$10^{4} \Delta n_{\text {d }} \ldots$	33	-	-	-	-	-	

$10^{5} \psi_{2} \ldots \ldots$	58	106	125	136	213	336	348	373
$10^{7} \Delta B$	\ldots	0.050	$0 \cdot 109$	$0 \cdot 120$	$0 \cdot 130$	0.209	0.347	0.380
$10^{4} \Delta n_{\mathrm{D}}$	\ldots	-	-	-	-	-	-	3

whence $\Sigma\left(\Delta B . w_{2}\right) / \Sigma w_{2}^{2}=102 \cdot 9 ; \Sigma \Delta B / \Sigma w_{2}=101 \cdot 5$.

* Values at 25° when $w_{2}=0$ are (a) for carbon tetrachloride, $\varepsilon=2 \cdot 2270, d=1 \cdot 58454, n_{\mathrm{D}}=$ $1.4575, B=0.070 \times 10^{-7} ;(b)$ for benzene, $\varepsilon=2.2725, d=0.87378, n_{\mathrm{D}}=1.4973, B=0.410 \times 10^{-7}$.

Table 2. Total polarisations at infinite dilution, molecular refractions, and dipole moments calculated from Table 1.

Solute	Solvent	$\left(\alpha \varepsilon_{1}\right)_{w_{2}=0}$	$(\beta)_{w_{2}=0}$	${ }_{\infty} P_{2}$ (c.c.)	R_{D} (c.c.)	$\mu(\mathrm{D})$ *	$\mu(\mathrm{D}) \dagger$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{OH}$	CCl_{4}	$5 \cdot 15$	-0.517	77.5	$28 \cdot 0$	$1 \cdot 5{ }_{6}$	$1 \cdot 5$
$\mathrm{Me} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OH}$	CCl_{4}	$4 \cdot 36$	-0.550	$80 \cdot 65$	$33 \cdot 4$	$1 \cdot 5$	1.49
$\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OH}$	CCl_{4}	$7 \cdot 41$	-0.237	$130 \cdot 1$	$33 \cdot 3$	$2 \cdot 17$	$2 \cdot 1{ }_{6}$
	$\mathrm{C}_{6} \mathrm{H}_{6}$	$4 \cdot 37$	$0 \cdot 320$	135.5	$32 \cdot 7$	$2 \cdot 24$	$2 \cdot 2{ }_{2}$
$\mathrm{Br} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OH}$	CCl_{4}	$5 \cdot 31$	$0 \cdot 045$	127.6	$36 \cdot 0$	$2 \cdot 12$	$2 \cdot 0_{95}$
	$\mathrm{C}_{6} \mathrm{H}_{6}$	$3 \cdot 50$	$0 \cdot 461$	145.7	37.5	$2 \cdot 30$	$2 \cdot 28$
$\mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OH}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	18.6	$0 \cdot 349$	517.5	37.75	$4 \cdot 8$	$4 \cdot 8{ }_{3}$

Table 3. Molar Kerr constants at infinite
dilution calculated from Tables 1 and 2.

Solute	Solvent	γ	$\delta *$	$\delta^{* *}$	${ }_{\infty}\left({ }_{\mathrm{m}} K_{2}\right)^{*} \times 10^{12}$	$\infty\left(\mathrm{m} K_{2}\right)^{* *} \times 10^{12}$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{OH}$	CCl_{4}	0.095	$55 \cdot 14$	$54 \cdot 4_{1}$	$38 \cdot 1$	$37 \cdot 6$
$\mathrm{Me} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OH}$,'	0.088	34.64	$34 \cdot 91$	$27 \cdot 6$	$27 \cdot 7$
$\mathrm{Cl}^{\cdot} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OH}$,,	0.096	$175 \cdot 2$	$178 \cdot 9$	166.4	$170 \cdot 0$
$\mathrm{Br}^{\cdot} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OH}$		0.091	$172 \cdot 4$	172.2	$221 \cdot 3$	221.0
$\mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OH}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	$0 \cdot 062$	$250 \cdot 9_{5}$	$247 \cdot 7$	2559	2524

${ }^{*}\left(1 / B_{1}\right) \sum\left(\Delta B \cdot w_{2}\right) / \sum w_{2}^{2} ; \quad{ }^{* *}\left(1 / B_{1}\right) \sum \Delta B / \sum w_{2} ;$ corresponding values of ${ }_{\infty}\left({ }_{\mathrm{m}} K_{2}\right)$ are similarly asterisked.

Discussion

Dipole Moments.-Earlier reported values for the present five solutes are not numerous and differ among themselves. They mostly refer to solutions in benzene, none to carbon tetrachloride as solvent. The M.I.T. Tables ${ }^{5}$ list ranges as follows:

	μ (D)		μ (D)
Phenol	1.4-1.7	p-Chlorophenol	$2 \cdot 1$ - 2.68
p-Cresol	1.57-1.64	p-Bromophenol	$2 \cdot 125-2.86$
		p-Nitrophenol ..	$5 \cdot 01{ }_{6}-5.05$

In particular, our results may be compared with those of Donle and Gehrekens ${ }^{6}$ who quote $1.57,1.57,2 \cdot 22,2 \cdot 12_{5}$, and 5.02 D , respectively, for the above molecules. Anzillotti and Curran ${ }^{7}$ give $\mu=2.25$ D for p-bromophenol. Both Fogelberg and Williams ${ }^{8}$ and Donle and Gehrckens ${ }^{6}$ record the moment of p-nitrophenol as slightly over 5 D .

Molar Kerr Constants.-An analysis of the observed values of ${ }_{m} K$ is difficult because the conformation of the hydroxyl group and the direction of action of the molecular resultant moment (vis-à-vis the principal semi-axes of polarisability) are not known with certainty. The following approach to the problem leads to conclusions which roughly fit the data from experiment.

Le Fèvre and Rao ${ }^{9}$ listed semi-axes for benzene, toluene, chloro- and bromo-benzene, and nitrobenzene. Since $b_{\mathrm{L}}{ }^{\mathrm{C-H}}=b_{\mathrm{T}}{ }^{\mathrm{C-H}}=b_{\mathrm{V}^{0-H}}=0.064 \times 10^{-23}$ c.c., the corresponding semi-axes for " phenyl" or " p-X-phenyl" are known. Le Fèvre, Le Fèvre, Rao, and Williams determined the semi-axes of methanol ${ }^{1(d)}$ as $0.315,0.363$, and 0.278×10^{-23}; subtraction of $3 b_{\mathrm{i}}{ }^{\mathrm{C}-\mathrm{H}}$ gives for the $\mathrm{C}-\mathrm{O}-\mathrm{H}$ fragment $b_{1}=0.123, b_{2}=0.171$, and $b_{3}=$ 0.086×10^{-23}. If it is assumed that the respective semi-axes of the aryl group and the $\mathrm{C}-\mathrm{O}-\mathrm{H}$ unit are parallel, then estimates for the phenols emerge as in Table 4.

The totals, $\sum b_{i}$ (calc.) $=b_{1}+b_{2}+b_{3}$, computed on this basis, show satisfactory agreement in the first four cases with $\sum b_{i}$ (obs.) drawn from electronic polarisations taken as

[^1]Table 4. Predicted polarisability semi-axes.

	$10^{23} b_{1}$	$10^{23} b_{2}$	$10^{23} b_{3}$	$10^{23} \sum b_{1}$ (calc.)	$10^{23} \sum b_{\text {i }}$ (obs.)
$\mathrm{H} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OH}$	$1 \cdot 18$	1.23	0.76	3-17	$3 \cdot 16$
$\mathrm{Me} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OH}$	1.33	1.51	0.90	$3 \cdot 74$	$3 \cdot 78$
$\mathrm{Cl}^{\cdot} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OH}$	1.54	$1 \cdot 36$	$0 \cdot 84$	$3 \cdot 74$	3.76
$\mathrm{Br} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OH}$	1.74	$1 \cdot 41$	0.91	$4 \cdot 06$	$4 \cdot 07$
$\mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OH}$	1.68	1.31	0.88	$3 \cdot 87$	$4 \cdot 26$
$\mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OH}$	(2.07)	$1 \cdot 31$	$0 \cdot 88$	$4 \cdot 26$	$4 \cdot 26$

$0.95 R_{\mathrm{D}}$, the values of R_{D} being those in Table 2. For p-nitrophenol $\sum b_{\mathrm{i}}$ (obs.) $-\sum b_{\mathrm{i}}$ (calc.) $=0.39 \times 10^{-23}$ c.c. If, as previous work ${ }^{9-11}$ suggests, such exaltation of polarisability occurs predominantly along the 1,4 direction, then the semi-axes in the last line of Table 4 are probably more appropriate. The data of Table 4 correspond to values of $10^{35} \theta_{1}$ (the " anisotropy" term in the molar Kerr constant) as follow:

$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{OH}$	$2 \cdot 4$	$\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH} \ldots \ldots .$.	$4 \cdot 7$	$\mathrm{Br} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OH}$	$6 \cdot 2$	$\mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OH}$		$5 \cdot 7$
$\mathrm{C}_{7} \mathrm{H}_{7} \cdot \mathrm{OH}$	$3 \cdot 5$					$\mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OH}$		12.9

The problem now is the estimation of the θ_{2} 's (the " dipole " terms in the ${ }_{m} K$'s). When the resultant moment μ_{r} acts in the plane containing b_{1} and b_{2}, and makes an angle α° with the b_{1} direction, θ_{2} is given by

$$
\begin{aligned}
& \theta_{2}=\left(1 / 45 \boldsymbol{k}^{2} T^{2}\right)\left[\left(b_{1}-b_{2}\right)\left(\mu_{\mathrm{r}}^{2} \cos ^{2} \alpha-\mu_{\mathrm{r}}^{2} \sin ^{2} \alpha\right)+\right. \\
&\left.\left(b_{2}-b_{3}\right)\left(\mu_{\mathrm{r}}^{2} \sin ^{2} \alpha\right)-\left(b_{3}-b_{1}\right)\left(\mu_{\mathrm{r}}^{2} \cos ^{2} \alpha\right)\right]
\end{aligned}
$$

At the outset we thought α in phenol and p-cresol might be $c a .60^{\circ}$ as in alcohols; ${ }^{1(d)}$ however, this led to values of θ_{2} which were too large (the sums, $\theta_{1}+\theta_{2}$, from experiment being ca. 9×10^{-35} for phenol and 7×10^{-35} for p-cresol). Angles less than 60° diminished the disagreement:

		α	60°	50°	40°	30°	0°
Phenol	$\ldots \ldots \ldots \ldots \ldots \ldots$	$10^{35} \theta_{2}$ (calc.)	15	14	$13 \cdot 3$	$12 \cdot 5$	$11 \cdot 4$
p-Cresol	$\ldots \ldots \ldots \ldots \ldots \ldots$.	,n	19	16.5	$13 \cdot 8$	11	7.3

The nearest approach to the observed values of θ_{2} is given when $\alpha=0^{\circ}$, but from the natures of the two molecules concerned this cannot be a correct result. With the more polar para-substituted derivatives the dependence of θ_{2} on α is marked, θ_{2} increasing as α is diminished. Values of α in harmony with our measurements are as follows:

That α might have such magnitudes in these three molecules seems credible; they are notably acidic, so that their $\mathrm{X} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{O}$ portions are predisposed to become anions; two effects of this are predictable: the $\mathrm{C}-\mathrm{O}-\mathrm{H}$ angle may be increased (presumably in $\left.\mathrm{C}-\mathrm{O}^{-}\right\} \mathrm{H}^{+}$the three atoms are collinear) and resonance of the kind $\mathrm{X}^{-} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{O}^{-} \leftrightarrow$ $\mathrm{X} \cdot \mathrm{C}_{6} \mathrm{H}_{4}=\mathrm{O}$ will be favoured. Both effects will tend to move $\mu_{\text {res }}$ towards the 1,4 line; the presence in the 4 -positions of groups having $-M$ character will also assist the resonance mentioned.

With all five solutes we have initially assumed that contributions from forms such as $-\mathrm{C}_{6} \mathrm{H}_{5}=\stackrel{+}{\mathrm{O}} \mathrm{H}$ cause the $\mathrm{O}-\mathrm{H}$ bond to be coplanar with the Ar ring. Were this not so, however, for phenol and p-cresol an explanation of the foregoing unsuccessful calculations of θ_{2} for these substances would be forthcoming. As an illustration, suppose the $\mathrm{C}-\mathrm{O}-\mathrm{H}$
${ }^{10}$ Le Fèvre and Le Fèvre, $J ., 1954,1577$.
11 Ref. 3, p. 301.
unit to be in a plane normal to the Ar ring in phenol and p-cresol, then with μ_{r} at 60° to $b_{1}, 10^{35} \theta_{2}$ becomes -17.7 and -20.9 respectively; it is clear therefore that, as the $\mathrm{O}-\mathrm{H}$ link is rotated about the $\mathrm{C}-\mathrm{O}$ bond, out of the Ar plane, θ_{2} will become less and less positive, and ultimately negative. There is of course no firm evidence that in these two molecules $\mu_{\text {res }}$ is acting at 60° to b_{1}. A simple vector calculation shows that the moment of phenol (1.53 D) needs to interact at 77° with the moment of toluene (0.34 D) to produce the resultant observed (1.49 D) for p-cresol. Use of 77° instead of 60° increases the negativities of the θ_{2} 's quoted. The observation of values of θ_{2} lower than those calculated can thus be easily understood. Parallel considerations for the p-halogeno- and p-nitro-phenols are unnecessary because the quantities from experiment agree well enough with those from prediction and in no way suggest any need to reduce the latter.

University of Sydney, N.S.W., Australia.
[Received, August 25th, 1959.]

[^0]: ${ }^{1}$ (a) Le Fèvre and Williams, $J ., 1960,108$; (b) ibid, p. 115; (c) Le Fèvre and Rao, $J ., 1960,119$; (d) Le Fèvre, Le Fèvre, Rao, and Williams, $J ., 1960,123$; (e) Le Fèvre and Williams, $J ., 1960,128$.
 ${ }^{2}$ Le Fèvre and Le Fèvre, J., 1953, 4041.
 ${ }^{3}$ Le Fèvre and Le Fèvre, Rev. Pure Appl. Chem., 1955, 5, 261.
 ${ }^{4}$ Le Fèvre, Le Fèvre, and Oh, Austral. J. Chem., 1957, 10, 218.

[^1]: ${ }^{5}$ Wesson, " Tables of Electric Dipole Moments," Technology Press, Massachusetts Inst. Technology, 1948.
 ${ }^{6}$ Donle and Gehrckens, Z. phys. Chem., 1932, B, 18, 316.
 7 Anzillotti and Curran, J. A mer. Chem. Soc., 1943, 65, 607.
 ${ }^{8}$ Fogelberg and Williams, J. Amer. Chem. Soc., 1930, 52, 1356.
 ${ }^{9}$ L.e Fèvre and Rao, J., 1958, 1465.

